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The electron energy spectrum and the magnetic susceptibility of the two-dimensional repulsive Hubbard model are 
investigated using the diagram technique for the case of strong correlations. In this technique a power series in the hopping 
constant is used. Obtained results reproduce adequately available data of Monte Carlo simulations. With departure from 
half-filling x our calculated spectrum demonstrates a pseudogap near the Fermi level and an excitation band with the 
properties of the spin-polaron band of the t-J model. The low-frequency magnetic susceptibility becomes incommensurate 
and the incommensurability parameter grows with x. The value of the incommensurability parameter, its dependence on the 
transfer frequency and on x resemble experimental results in lanthanum cuprates.  
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The discovery of high-Tc superconductors and heavy-

fermion compounds has revived interest in strongly 
correlated electron systems. One of the simplest and still 
realistic models in this field is the one-band Hubbard 
model [1] two-dimensional version of which has been 
extensively studied in connection with the cuprate 
perovskite superconductors. The Hamiltonian of the model 
reads  
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where †

σla  and σla  are the electron creation and 
annihilation operators, l labels sites of the square plane 
lattice, σ=±1 is the spin projection, 'llt  and U are hopping 

and on-site repulsion constants, and σσσ lll aan †= . 
The idea of strong-coupling diagram technique for this 
model traces back to early works by J. Hubbard [1] and is 
based on the fact that if the Coulomb repulsion dominates, 

|| '11tU ≥ , it is reasonable to treat the kinetic energy in the 
framework of a perturbation theory. In the diagram 
technique of Refs. [2, 3] this expansion for Green’s 
function is expressed in terms of site cumulants of electron 
creation and annihilation operators. Cumulants of the first 
two orders read  
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where T is the time-ordering operator which arranges other 
operators from right to left in ascending order of times τ, 
the subscript 0 of the angular brackets indicates that the 
statistical averaging and time dependencies of the 
operators  
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are determined by the site Hamiltonian  
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with the chemical potential μ. All operators in the 
cumulants belong to the same lattice site. Due to the 
translational symmetry the cumulants do not depend on the 
site position. 
Let us consider the application of this diagram technique 
to the electron Green’s function  
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where the statistical averaging and time dependencies of 
operators are determined by the Hamiltonian 

σ
σ
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n∑−= HH . It is convenient to introduce the 

notion of an irreducible diagram which cannot be divided 
into two parts by cutting a hopping line. The irreducible 
diagrams of the first four orders which contribute to 
Green’s function (3) are shown in Fig. 1 with their signs 
and prefactors.  
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Fig. 1. Irreducible diagrams of the first four orders of the 
expansion in powers of tk. 

 
 

In this figure, circles are the cumulants which orders 
are determined by the number of incoming or outgoing 
lines. These lines symbolize hopping between sites caused 
by the kinetic term of Hamiltonian (1). The bare hopping 
line corresponds to the multiplier kt  which is a Fourier 

transform of the hopping constants 'llt  with the wave 
vector k. The diagram technique admits partial summation 
in which irreducible diagrams are inserted in the internal 
hopping lines of diagrams in Fig. 1. As a consequence the 
bare hopping kt  is substituted by the renormalized one,  

 

Θ(k,n)=tk+t
2
kG(k,n), (4) 

 
where the integer n stands for the fermion Matsubara 
frequency ωn=(2n+1)πT with the temperature T and 

G(k,n) is the respective Fourier transform of Green’s 
function (3). This function satisfies the Larkin equation  
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where K(k,n) is the sum of all irreducible diagrams.  

In our calculations this total sum of irreducible 
diagrams was substituted by the contribution of the 
diagrams (a), (b), and (e) in Fig. 1. Ignoring the diagrams 
(c) and (d) was motivated by the fact that for tll=0 their 
contributions start from terms of the fourth and sixth 
orders in tk, respectively, while the lowest-order term of 
the diagram (e) is of the third order. Besides, the diagrams 
(c) and (d) give contributions of the same local type as the 
diagram (b). Due to their higher order the contributions are 
expected to give small corrections to the diagram (b). For 
Green’s functions in the renormalized hopping lines (4) we 
used the Hubbard-I approximation. It is obtained if in 
Eq. (5) the diagram (a) with the first-order cumulant K1, 

Eq. (2), is used instead of the total sum of irreducible 
diagrams [2, 3]. In this approach, the solution obtained 
after the transition from imaginary to real frequencies has 
a flaw – a negative spectral weight near ω=−μ and U−μ [2, 

3]. To overcome this difficulty for the analytic 
continuation to the real frequency axis we used a Padé 
approximant of the considered Green’s function, applying 
the procedure described in Ref. [4]. The reason for such an 
approach is the fact that domains of analyticity of Padé 
approximants and approximated functions are generally 
different. In our case this procedure did allow us to 
remedy the mentioned flaw. 
 

 
 

Fig. 2. The spectral function A(k,ω) calculated for 
momenta along the symmetry lines of the square 
Brillouin zone in a 40×40 lattice for t=−U/8, T=0.001U,  
                                   and x=0.12. 

 
 

The spectral function  
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calculated in this approach reproduces the key features of 
spectra obtained by Monte Carlo simulations [5] and 
cluster methods [6]. In particular, at half-filling, μ=U/2, 

11 == σnn , the spectrum has a four-band structure – 
each of the Hubbard bands splits into two subbands. It 
follows from our calculations that this splitting occurs due 
to two pronounced minima in ImK(k,ω). Maxima in the 
spectral function arise at frequencies which satisfy the 
condition 0),(Re1 =− wKt kk  and are located on 
either side of the minima of ImK(k,ω). It looks like each 
of the minima splits the Hubbard band into two subbands. 
The four-band structure is partly retained on departure 
from half-filling. 

An example of the obtained spectral function is shown 
in Fig. 2. Hereafter we consider the case where only the 
constant t for hopping between nearest neighbor sites is 
nonzero. The considered model possesses the electron-
hole symmetry. Therefore in the following discussion we 
shall restrict our consideration to the case n ≤1 and set 
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x=1−n . In the spectrum in Fig. 2, the suppression of the 
spectral intensity near the Fermi level is noteworthy. This 
suppression creates a pseudogap which owes its origin to 
strong electron correlations. Recently spectra with 
analogous pseudogaps were also obtained by cluster 
methods [6]. In our calculations the pseudogap appears at 
x≈0.06 and disappears at x≈0.2. Analogous behavior of the 
pseudogap was found in the photoemission of cuprates [7] 
and in the related t-J model [8]. 

With departure from half-filling, already at small x a 
new dispersive band appears in the spectrum. In Fig. 2 the 
respective maxima are seen below the Fermi level. The 
dispersion of the band is much larger in the direction 
(0,0)−(π,π) than along (π,0)−(0,π) where the maximum 
energies of the band are located. For small x the width of 

the band is approximately equal to 2J where J=4t2/U is the 
superexchange constant. The bandwidth decreases with 
increasing x. In these properties the band resembles the 
spin-polaron band of the t-J model [9]. 
 

 

 
Fig. 3. (a) The momentum dependence of χ''(kω) for 
k=(k,k), t=−U/8, T=0.06U, ω=0.002U and n =1 (dash-
dotted line), n ≈0.94 (dashed line), and n ≈0.88 (solid 
line). (b) The dispersion of maxima in χ''(kω) for t=−U/8,  
                            T=0.06U, and nv ≈0.88. 

 

Now let us consider the application of the diagram 
technique discussed above for calculating the spin Green’s 
function  
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lll aas  is the spin operator. Using this 
technique it can be shown that the function satisfies the 
equation  
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where the combined indices p=(k,iων)  and 

pj=(kj,iωnj
) were introduced, ων=2νπT is the boson 

Matsubara frequency, kkk tnn /),(),( Θ=Π , N is the 
number of sites, and Γ(p1,p+p1,p+p2,p2) is the sum of all 

four-leg diagrams. In such a diagram, starting from any 
leg, i.e. an external end of the diagram, one can reach any 
other leg moving along the hopping lines and cumulants. 
Among the four-leg diagrams a subset of irreducible 
diagrams γ(p1,p+p1,p+p2,p2) can be separated. These 

latter diagrams cannot be divided into two disconnected 
parts by cutting two hopping lines. The sum of all four-leg 
diagrams satisfies the Bethe-Salpeter equation  
 

Γ(p1,p+p1,p+p2,p2)=γ(p1,p+p1,p+p2,p2) 

−N−1T ∑
p3

 γ(p1,p+p1,p+p3,p3)Θ(p3)Θ(p+p3)  

×Γ(p3,p+p3,p+p2,p2).                                        (8) 

 
In the following calculations we simplified the general 

equations (7) and (8) by using bare hopping lines instead 
of the renormalized ones and by employing the lowest-
order irreducible four-leg diagram instead of 
γ(p1,p+p1,p+p2,p2). This four-leg diagram is described by 

the second-order cumulant K2, Eq. (2). In this 

approximation the Bethe-Salpeter equation (8) can be 
solved exactly. 

We found that at half-filling our calculated 
temperature dependence of the zero-frequency magnetic 
susceptibility reproduces adequately key features of results 
of Monte Carlo simulations [10]. In particular, the uniform 
susceptibility tends to a finite value for vanishing 
temperature as it must. The staggered susceptibility 
diverges with decreasing temperature which signals the 
establishment of the long-range antiferromagnetic order. 
The transition temperature is finite which indicates the 
violation of the Mermin-Wagner theorem [11]. However, 
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the transition temperature is always lower than the 
analogous temperature in the random phase 
approximation. Besides, the transition temperature 
decreases with decreasing the ratio |t|/U, i.e. the violation 
of the Mermin-Wagner theorem becomes less pronounced 
on enforcing the condition for which the approximation 
was developed. For small values of this ratio the calculated 
square of the site spin differs by less than 10% from the 
results of Monte Carlo simulations. Also in agreement 
with these results we found no evidence of ferromagnetic 
correlations in the considered range of electron 
concentrations 0.8n �≤1 for the repulsion parameters 
8|t|≤U≤16|t|. 

The imaginary part of the real-frequency 
susceptibility,  
 

),,(Im)('' ηωωχ ikDk += 0+→η              (9) 
 

is of special interest, because it determines the dynamic 
structure factor measured in neutron scattering 
experiments. The calculated momentum dependence of 
this susceptibility for a fixed transfer frequency is shown 
in Fig. 3 (a). Wave vectors were taken along the diagonal 
of the Brillouin zone. As seen from the figure, with 
departure from half-filling χ(k,ω) becomes 
incommensurate – the momentum of its maximum 
deviates from (π,π). The incommensurability parameter, 
i.e. the distance between (π,π) and the wave vector of the 
susceptibility maximum, grows with x. As seen from 
Fig. 3 (b), for a fixed electron concentration the 
incommensurability parameter decreases with increasing ω 
and at some frequency the incommensurability disappears 
– the susceptibility appears to be peaked at the 
antiferromagnetic momentum. 

This behavior of the susceptibility in the Hubbard 
model resembles the low-frequency incommensurate 
magnetic response observed by inelastic neutron scattering 
in lanthanum cuprates [12]. Also the value of the 
incommensurability parameter is close to that measured 
experimentally. The dispersion which is analogous to that 
shown in Fig. 3 (b) forms the lower part of the “sand-
glass” dispersion found in these crystals. It should be 
emphasized that in the Hubbard model the magnetic 
incommensurability is a property of strong electron 
correlations. The similarity of the mentioned experimental 
and calculated results gives reason to consider these strong 
correlations as a possible mechanism of the low-frequency 
incommensurability observed in experiment. A similar 
mechanism was considered for the related t-J model in 
Ref. [13]. 

In summary, the strong-coupling diagram technique 
allowed us to reveal several essential features of the 
Hubbard model. Among them are the four-band structure 

of the electron spectrum near half-filling, the pseudogap 
and the analog of the spin-polaron band which appear near 
the Fermi level at some departure from half-filling. We 
found also the low-frequency incommensurability in the 
magnetic response of this model with properties which are 
similar to those observed in lanthanum cuprates. 
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