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Pseudogap and magnetic incommensurability in the

Hubbard model
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The electron energy spectrum and the magnetic susceptibility of the two-dimensional repulsive Hubbard model are
investigated using the diagram technique for the case of strong correlations. In this technique a power series in the hopping
constant is used. Obtained results reproduce adequately available data of Monte Carlo simulations. With departure from
half-filling x our calculated spectrum demonstrates a pseudogap near the Fermi level and an excitation band with the
properties of the spin-polaron band of the t-J model. The low-frequency magnetic susceptibility becomes incommensurate
and the incommensurability parameter grows with x. The value of the incommensurability parameter, its dependence on the
transfer frequency and on x resemble experimental results in lanthanum cuprates.
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The discovery of high-TC superconductors and heavy-

fermion compounds has revived interest in strongly
correlated electron systems. One of the simplest and still
realistic models in this field is the one-band Hubbard
model [1] two-dimensional version of which has been
extensively studied in connection with the cuprate
perovskite superconductors. The Hamiltonian of the model
reads

U
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where alTU and a,, are the electron creation and
annihilation operators, | labels sites of the square plane
lattice, c=+1 is the spin projection, t,. and U are hopping

and on-site repulsion constants, and N, = afaa,g.

The idea of strong-coupling diagram technique for this
model traces back to early works by J. Hubbard [1] and is
based on the fact that if the Coulomb repulsion dominates,
U 2|t |, itis reasonable to treat the kinetic energy in the
framework of a perturbation theory. In the diagram
technique of Refs.[2, 3] this expansion for Green’s
function is expressed in terms of site cumulants of electron
creation and annihilation operators. Cumulants of the first
two orders read
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where T is the time-ordering operator which arranges other
operators from right to left in ascending order of times r,
the subscript 0 of the angular brackets indicates that the
statistical averaging and time dependencies of the
operators

alo-(t) = exp(H,t)a,L exp(—H |t)
are determined by the site Hamiltonian

H, = z [(U /z)nlo'nl,—o' - un,, ]

with the chemical potential p. All operators in the
cumulants belong to the same lattice site. Due to the
translational symmetry the cumulants do not depend on the
site position.

Let us consider the application of this diagram technique
to the electron Green’s function

GUr' 1) =(Ta, (Ma, (D)  ©

where the statistical averaging and time dependencies of
operators are determined by the Hamiltonian

H=H —,uz N, . It is convenient to introduce the
lo

notion of an irreducible diagram which cannot be divided
into two parts by cutting a hopping line. The irreducible
diagrams of the first four orders which contribute to
Green’s function (3) are shown in Fig. 1 with their signs
and prefactors.
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Fig. 1. Irreducible diagrams of the first four orders of the
expansion in powers of t.

In this figure, circles are the cumulants which orders
are determined by the number of incoming or outgoing
lines. These lines symbolize hopping between sites caused
by the kinetic term of Hamiltonian (1). The bare hopping

line corresponds to the multiplier t, which is a Fourier

transform of the hopping constants t,. with the wave

vector k. The diagram technique admits partial summation
in which irreducible diagrams are inserted in the internal
hopping lines of diagrams in Fig. 1. As a consequence the

bare hopping t, is substituted by the renormalized one,

@(k,n):tk+tiG(k,n), 4)

where the integer n stands for the fermion Matsubara
frequency mn:(2n+1)nT with the temperature T and

G(k,n) is the respective Fourier transform of Green’s
function (3). This function satisfies the Larkin equation

Kk
Gl = Kkn)' ©

where K(k,n) is the sum of all irreducible diagrams.

In our calculations this total sum of irreducible
diagrams was substituted by the contribution of the
diagrams (a), (b), and (e) in Fig. 1. Ignoring the diagrams
(c) and (d) was motivated by the fact that for t”:O their

contributions start from terms of the fourth and sixth
orders in 1% respectively, while the lowest-order term of

the diagram (e) is of the third order. Besides, the diagrams
(c) and (d) give contributions of the same local type as the
diagram (b). Due to their higher order the contributions are
expected to give small corrections to the diagram (b). For
Green’s functions in the renormalized hopping lines (4) we
used the Hubbard-lI approximation. It is obtained if in
Eqg. (5) the diagram (a) with the first-order cumulant Kl'

Eq. (2), is used instead of the total sum of irreducible
diagrams [2, 3]. In this approach, the solution obtained
after the transition from imaginary to real frequencies has
a flaw — a negative spectral weight near o=—p and U—p [2,

3]. To overcome this difficulty for the analytic
continuation to the real frequency axis we used a Padé
approximant of the considered Green’s function, applying
the procedure described in Ref. [4]. The reason for such an
approach is the fact that domains of analyticity of Padé
approximants and approximated functions are generally
different. In our case this procedure did allow us to
remedy the mentioned flaw.
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(m0) =

(0,0)

Fig. 2. The spectral function A(k,@) calculated for

momenta along the symmetry lines of the square

Brillouin zone in a 4040 lattice for t=-U/8, T=0.001U,
and x=0.12.

The spectral function
Ak, ®) = -7 ImG(k,w)

calculated in this approach reproduces the key features of
spectra obtained by Monte Carlo simulations [5] and
cluster methods [6]. In particular, at half-filling, u=U/2,

n= <n16> =1, the spectrum has a four-band structure —

each of the Hubbard bands splits into two subbands. It
follows from our calculations that this splitting occurs due
to two pronounced minima in ImK(K,®). Maxima in the
spectral function arise at frequencies which satisfy the

condition 1—t, ReK(k,w)=0 and are located on

either side of the minima of ImK(k,w). It looks like each
of the minima splits the Hubbard band into two subbands.
The four-band structure is partly retained on departure
from half-filling.

An example of the obtained spectral function is shown
in Fig. 2. Hereafter we consider the case where only the
constant t for hopping between nearest neighbor sites is
nonzero. The considered model possesses the electron-
hole symmetry. Therefore in the following discussion we
shall restrict our consideration to the case N <1 and set
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x=1-1 . In the spectrum in Fig. 2, the suppression of the
spectral intensity near the Fermi level is noteworthy. This
suppression creates a pseudogap which owes its origin to
strong electron correlations. Recently spectra with
analogous pseudogaps were also obtained by cluster
methods [6]. In our calculations the pseudogap appears at
x=~0.06 and disappears at x~0.2. Analogous behavior of the
pseudogap was found in the photoemission of cuprates [7]
and in the related t-J model [8].

With departure from half-filling, already at small x a
new dispersive band appears in the spectrum. In Fig. 2 the
respective maxima are seen below the Fermi level. The
dispersion of the band is much larger in the direction
(0,0)—(m,m) than along (=n,0)—(0,m%) where the maximum
energies of the band are located. For small x the width of

the band is approximately equal to 2J where J:4t2/U is the
superexchange constant. The bandwidth decreases with
increasing x. In these properties the band resembles the
spin-polaron band of the t-J model [9].
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Fig. 3. (@) The momentum dependence of »"(kw) for

k=(k,k), t=-U/8, T=0.06U, »=0.002U and N =1 (dash-

dotted line), N =0.94 (dashed line), and N ~0.88 (solid

line). (b) The dispersion of maxima in y"(kw) for t=-U/8,
T=0.06U, and N ~0.88.

Now let us consider the application of the diagram
technique discussed above for calculating the spin Green’s
function

D'z’ 1,7)=Ts/(z')s, ° (), (6)

where s/ =a,Taa,ﬁa is the spin operator. Using this

technique it can be shown that the function satisfies the
equation

D(p)=—N"TY  G(p,)G(p+p,)+

P
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where the combined indices p:(k,iwv) and

p:=(k:.,io_ ) were introduced, ®_=2vxT is the boson
U v

Matsubara frequency, IT(K,n)=0®(k,n)/t,, N is the
number of sites, and F(pl,p+p1,p+p2,p2) is the sum of all

four-leg diagrams. In such a diagram, starting from any
leg, i.e. an external end of the diagram, one can reach any
other leg moving along the hopping lines and cumulants.
Among the four-leg diagrams a subset of irreducible
diagrams y(pl,p+pl,p+p2,p2) can be separated. These

latter diagrams cannot be divided into two disconnected
parts by cutting two hopping lines. The sum of all four-leg
diagrams satisfies the Bethe-Salpeter equation

['(pq.p+P1:P+P5P0)=Y(P1,:P+P1.P*P2.P,)

W~y (P .PHP1.P+P3.P)O(P3)O(P+D3)
P3
><F(p3,p+p3,p+p2,p2). ()]

In the following calculations we simplified the general
equations (7) and (8) by using bare hopping lines instead
of the renormalized ones and by employing the lowest-
order irreducible four-leg diagram instead of
y(p1,p+p1,p+p2,p2). This four-leg diagram is described by

the second-order cumulant K2, Eqg. (2). In this

approximation the Bethe-Salpeter equation (8) can be
solved exactly.

We found that at half-filling our calculated
temperature dependence of the zero-frequency magnetic
susceptibility reproduces adequately key features of results
of Monte Carlo simulations [10]. In particular, the uniform
susceptibility tends to a finite value for vanishing
temperature as it must. The staggered susceptibility
diverges with decreasing temperature which signals the
establishment of the long-range antiferromagnetic order.
The transition temperature is finite which indicates the
violation of the Mermin-Wagner theorem [11]. However,
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the transition temperature is always lower than the
analogous  temperature in  the random  phase
approximation. Besides, the transition temperature
decreases with decreasing the ratio [t//U, i.e. the violation
of the Mermin-Wagner theorem becomes less pronounced
on enforcing the condition for which the approximation
was developed. For small values of this ratio the calculated
square of the site spin differs by less than 10% from the
results of Monte Carlo simulations. Also in agreement
with these results we found no evidence of ferromagnetic
correlations in the considered range of electron
concentrations 0.8A<1 for the repulsion parameters
8|tj<U<186t|.

The imaginary part of the
susceptibility,

real-frequency

7" (kw)=ImD(k,0+1in),n > +0 9)

is of special interest, because it determines the dynamic
structure  factor measured in neutron  scattering
experiments. The calculated momentum dependence of
this susceptibility for a fixed transfer frequency is shown
in Fig. 3 (a). Wave vectors were taken along the diagonal
of the Brillouin zone. As seen from the figure, with
departure from half-filling x(K,) becomes
incommensurate — the momentum of its maximum
deviates from (m,m). The incommensurability parameter,
i.e. the distance between (r,n) and the wave vector of the
susceptibility maximum, grows with x. As seen from
Fig.3 (b), for a fixed electron concentration the
incommensurability parameter decreases with increasing o
and at some frequency the incommensurability disappears
— the susceptibility appears to be peaked at the
antiferromagnetic momentum.

This behavior of the susceptibility in the Hubbard
model resembles the low-frequency incommensurate
magnetic response observed by inelastic neutron scattering
in lanthanum cuprates [12]. Also the value of the
incommensurability parameter is close to that measured
experimentally. The dispersion which is analogous to that
shown in Fig.3 (b) forms the lower part of the “sand-
glass” dispersion found in these crystals. It should be
emphasized that in the Hubbard model the magnetic
incommensurability is a property of strong electron
correlations. The similarity of the mentioned experimental
and calculated results gives reason to consider these strong
correlations as a possible mechanism of the low-frequency
incommensurability observed in experiment. A similar
mechanism was considered for the related t-J model in
Ref. [13].

In summary, the strong-coupling diagram technique
allowed us to reveal several essential features of the
Hubbard model. Among them are the four-band structure

of the electron spectrum near half-filling, the pseudogap
and the analog of the spin-polaron band which appear near
the Fermi level at some departure from half-filling. We
found also the low-frequency incommensurability in the
magnetic response of this model with properties which are
similar to those observed in lanthanum cuprates.
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